Reference Sheet

Measurement

Limits of accuracy

- Absolute error = \(\frac{1}{2} \times \text{precision} \)
- Upper bound = \(\text{measurement} + \text{absolute error} \)
- Lower bound = \(\text{measurement} - \text{absolute error} \)

Length

\[l = \frac{\theta}{360} \times 2\pi r \]

Area

\[A = \frac{\theta}{360} \times \pi r^2 \]

\[A = \frac{h}{2} (a + b) \]

\[A \approx \frac{h}{2} (d_f + d_i) \]

Surface area

\[A = 2\pi r^2 + 2\pi rh \]

\[A = 4\pi r^2 \]

Trigonometry

- \(\sin A = \frac{\text{opp}}{\text{hyp}} \)
- \(\cos A = \frac{\text{adj}}{\text{hyp}} \)
- \(\tan A = \frac{\text{opp}}{\text{adj}} \)

\[A = \frac{1}{2} ab \sin C \]

\[\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \]

\[c^2 = a^2 + b^2 - 2ab \cos C \]

\[\cos C = \frac{a^2 + b^2 - c^2}{2ab} \]

Financial Mathematics

Future Value

\[FV = PV (1 + r)^n \]

Straight-line method of depreciation

\[S = V_0 - Dn \]

Declining-balance method of depreciation

\[S = V_0 (1 - r)^n \]

Statistical Analysis

An outlier is a score

- less than \(Q_1 - 1.5 \times IQR \)
- or
- more than \(Q_3 + 1.5 \times IQR \)

\[z = \frac{x - \overline{x}}{s} \]

Normal distribution

- approximately 68% of scores have z-scores between -1 and 1
- approximately 95% of scores have z-scores between -2 and 2
- approximately 99.7% of scores have z-scores between -3 and 3