The new Physics syllabus has been developed using the established NSW Education Standards Authority (NESA) syllabus development process. The syllabus includes Australian curriculum content and reflects the new directions of the *Stronger HSC Standards* reforms.

The *Stronger HSC Standards* reforms include:
- supporting the achievement of high minimum standards for all students
- ensuring the flexibility and versatility of the Higher School Certificate (HSC) to cater for the full range of students
- encouraging every student to achieve at their highest possible level
- a focus on the acquisition of deep knowledge, understanding and skills for students.

NSW Stage 6 syllabuses are inclusive of the learning needs of all students. The syllabuses accommodate teaching approaches that support student diversity, including students with special education needs, gifted and talented students and students learning English as an additional language or dialect (EAL/D).

Many of the features of the current Stage 6 syllabuses have been retained, including:
- rationale
- aim
- objectives
- outcomes
- content for Year 11 and Year 12 courses.

New features of Stage 6 syllabuses include:
- Australian curriculum content identified by codes
- Learning across the curriculum content, including cross-curriculum priorities and general capabilities
- publication in an interactive online format
- an interactive glossary.
What is similar?

Students will continue to be provided with opportunities to:
- build on the knowledge, understanding and skills of the Physical World in Stage 5 Science
- apply Working Scientifically skills in an integrated way
- design and conduct practical investigations
- participate in fieldwork in Year 11 and Year 12.

What is different?

- Contexts have been removed to provide flexibility for teaching content.
- Inquiry questions provide a focus for teaching and learning.
- There are increased opportunities for analysis using mathematical principles.
- The introduction of depth studies in Year 11 and in Year 12 provides opportunities to investigate areas of interest in more depth.
- New content includes:
 - analysis of forces and motion in two dimensions using vectors
 - standing waves
 - the Doppler effect
 - elementary thermodynamics
 - wave and quantum models of light
 - Standard Model of matter.

Why is assessment changing?

The Stronger HSC Standards reforms provide new directions for assessment practices in all Stage 6 courses to:
- rebalance the emphasis on assessment to allow more time for teaching and learning
- maintain rigorous standards
- provide opportunities to assess students’ depth of knowledge and their conceptual, analytical and problem-solving skills.

School-based assessment requirements for Physics have changed to reflect new outcomes, course structure and content.
How are the school-based assessment requirements for Physics changing?

NESA continues to promote a standards-referenced approach to assessing and reporting student achievement. The approaches of assessment for, assessment as and assessment of learning are important to guide future teaching and learning opportunities and to provide students with ongoing feedback.

Changes to school-based assessment requirements for each course include:
• mandated components and weightings for Year 11 and Year 12
• capping the number of school-based assessment tasks to three in Year 11 and four in Year 12
• specified minimum and maximum weightings for formal tasks
• a variety of tasks to assess student knowledge, understanding and skills.

What is the plan for implementation?

<table>
<thead>
<tr>
<th>2017</th>
<th>2018</th>
<th>2019</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Term 1</td>
<td>Term 4</td>
</tr>
<tr>
<td></td>
<td>Start teaching new Year 11 courses for English, Mathematics, Science and History</td>
<td>Start teaching new Year 12 courses for English, Mathematics, Science and History</td>
</tr>
<tr>
<td></td>
<td>Start implementing new Year 11 school-based assessment requirements for all Board Developed Courses (excluding VET, Life Skills and Content Endorsed Courses)</td>
<td>Start implementing new Year 12 school-based assessment requirements for all Board Developed Courses (excluding VET, Life Skills and Content Endorsed Courses)</td>
</tr>
<tr>
<td>Familiarisation and planning</td>
<td></td>
<td>Start implementing new HSC examination specifications</td>
</tr>
</tbody>
</table>
What materials will be provided to support implementation?

Many existing resources will continue to be useful and relevant. Teaching units will need modification to meet the requirements of the new syllabus.

Support materials will assist teachers in familiarisation and planning for implementation of the syllabus and assessment requirements. Program Builder, an online programming tool, will be available for teachers in Term 1, 2017.

Initial materials released with the syllabus include:
- school-based assessment requirements
- assessment advice
- a parent guide to new syllabuses and assessment.

Additional materials to be released throughout 2017 include:
- sample scope and sequences
- sample teaching units
- sample assessment schedules
- sample assessment tasks
- advice on making adjustments for students with special education needs.

HSC Examination Specifications with sample materials will be released in Term 3, 2017.

The NSW Department of Education, the Catholic Education Commission NSW, the Association of Independent Schools of NSW and other school systems and professional teacher associations will continue to assist and support implementation of the syllabus.

How can I access the new Physics syllabus?

The Physics syllabus is available on the NESA website.
Features of Physics content pages

Content is organised in Years.

Content is organised by module.

The content focus and subheadings describe the scope of learning.

Working Scientifically skills relevant to the module are described.

Outcomes are coded and linked to content.

Content defines what students are expected to know and do.

Australian curriculum content is identified by codes.

Learning across the curriculum content is identified by icons.

Key terms are linked to the glossary.

MODULE 1: KINEMATICS

Outcomes

A student:

- designs and evaluates investigations in order to obtain primary and secondary data and information
- conducts investigations to collect valid and reliable primary and secondary data and information
- selects and processes appropriate qualitative and quantitative data and information using a range of appropriate media
- analyses and evaluates primary and secondary data and information
- solves scientific problems using primary and secondary data, critical thinking skills and scientific processes
- describes and analyses motion in terms of scalar and vector quantities in two dimensions and makes quantitative measurements and calculations for distance, displacement, speed, velocity and acceleration

Content Focus

Motion is a fundamental observable phenomenon. The study of kinematics involves describing, measuring and analysing motion without considering the forces and masses involved in that motion. Uniformly accelerated motion is described in terms of relationships between measurable scalar and vector quantities, including displacement, speed, velocity, acceleration and time.

Representations – including graphs and vectors, and equations of motion – can be used qualitatively and quantitatively to describe and predict linear motion.

By studying this module, students come to understand that scientific knowledge enables scientists to offer valid explanations and make reliable predictions, particularly in regard to the motion of an object.

Working Scientifically

In this module, students focus on designing, evaluating and conducting investigations to examine trends in data and solve problems related to kinematics. Students should be provided with opportunities to engage with all the Working Scientifically skills throughout the course.

Content

Motion in a Straight Line

Inquiry question: How is the motion of an object moving in a straight line described and predicted?

Students:

- describe uniform straight-line (rectilinear) motion and uniformly accelerated motion through:
 - qualitative descriptions
 - the use of scalar and vector quantities (ACSPh06)
 - conduct a practical investigation to gather data to facilitate the analysis of instantaneous and average velocity through:
 - quantitative, first-hand measurements
 - the graphical representation and interpretation of data (ACSPh06)